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Abstract: Cyber mimic defense is designed to ensure endogenous security, effectively countering
unknown vulnerabilities and backdoors, thereby addressing a significant challenge in cyberspace.
However, the immense scale of real-world networks and their intricate topology pose challenges for
measuring the efficacy of cyber mimic defense. To capture and quantify defense performance within
specific segments of these expansive networks, we embrace a partitioning approach that subdivides
large networks into smaller regions. Metrics are then established within an objective space constructed
on these smaller regions. This approach enables the establishment of several fine-grained metrics
that offer a more nuanced measurement of cyber mimic defense deployed in complex networks.
For example, the common-mode index is introduced to highlight shared vulnerabilities among
diverse nodes, the transfer probability computes the likelihood of risk propagation among nodes, and
the failure risk assesses the likelihood of cyber mimic defense technology failure within individual
nodes or entire communities. Furthermore, we provide proof of the convergence of the transfer
probability. A multitude of simulations are conducted to validate the reliability and applicability of the
proposed metrics.

Keywords: cyber mimic defense; complex network measurement; metrics

1. Introduction

The increasingly widespread application of the Internet in various social and economic
sectors is leading to an increasingly severe challenge for cyberspace. Network security
threats are becoming more diverse, complex, frequent, and widespread. In the current
online environment, there exists a significant asymmetry between network attacks and
defenses [1], often favoring the attackers. From the defensive perspective, it is generally
difficult to anticipate when and how attacks will occur, making it challenging to deploy
targeted defense strategies.

Traditional defense techniques, such as firewalls and intrusion detection
techniques [2,3], typically rely on known attack signatures to identify and match target
behaviors, leaving them at a disadvantage against unknown vulnerabilities and backdoors
in cyber warfare. A series of novel proactive defense technologies are proposed to address
this issue, such as honeypots [4] and Moving Target Defense (MTD) [5–7]. These methods
effectively improved the situation and significantly increased the difficulty and cost for
attackers to launch their attacks. However, they still have limitations: honeypot technology
requires a significant amount of prior knowledge from attackers [8], and MTD possesses
time sensitivity and uncontrollability, and the high-frequency variability, particularly, leads
to a decline in system performance [7].

In fact, there is no defense strategy that can achieve absolute security. Due to the stage-
specific nature of technological development and the level of awareness, vulnerabilities or

Appl. Sci. 2023, 13, 9213. https://doi.org/10.3390/app13169213 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169213
https://doi.org/10.3390/app13169213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0003-1204-4545
https://doi.org/10.3390/app13169213
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169213?type=check_update&version=1


Appl. Sci. 2023, 13, 9213 2 of 15

backdoor issues in software and hardware design cannot be completely avoided. In the
absence of the ability to eliminate inherent flaws and lack of prior knowledge, addressing
the threat of unknown vulnerabilities and backdoors remains a significant challenge in
cybersecurity. The emergence of the Cyber Mimic Defense (CMD) theory [9] provided a new
idea and paradigm to tackle this problem and demonstrated effective defense capabilities in
areas such as Software-Defined Networking (SDN) [10], cloud computing [11], distributed
systems [12], etc.

The core framework of Cyber Mimic Defense (CMD) is “Dynamic Heterogeneous
Redundancy” (DHR) [9], which is characterized by the following: (1) Dynamic: selecting
a set of functional executors based on scheduling policies at the current moment and
continuously changing this set to conceal the internal structure. (2) Heterogeneous: utilizing
multiple heterogeneous executors with significantly different implementation methods to
achieve the same functionality. (3) Redundancy: employing multiple executors and using
an adjudication mechanism to determine the final system output.

Through its structural effects, CMD achieves endogenous defense effects that are
independent of attack characteristics, effectively countering various attacks and unknown
threats. However, there is currently a lack of universal metrics to directly measure the
effectiveness of cyber mimic defense technology when applied to modern networks.
We cannot improve what we cannot measure [13], and this principle applies to cyber
mimic defense technology as well. The vast scale of real-world networks and the complex-
ity of their topology pose challenges for evaluating the effectiveness of the cyber mimic
defense. Therefore, there is an urgent need to develop general quantitative evaluation
metrics for cyber mimic defense systems.

It is widely recognized that no single metric is powerful enough to fully reflect the impact
of all relevant behaviors and defense strategies on the network. Therefore, we establish multi-
dimensional evaluation metrics to assess the effectiveness of cyber mimic defense technology
from various perspectives. We also found that most existing security strategies are typically
evaluated based on the entire network. However, in many cases, even the best defense strategy
may not necessarily extend security uniformly across the entire network, especially in large
networks with hundreds or thousands of nodes. If we use security metrics based on the overall
network assessment and observe improved security, it could be misleading as the security
improvement may be limited to certain parts of the network. As mentioned earlier, asymmetry
in network attacks and defenses exists, particularly in large-scale networks. The location from
which attackers launch their attacks is difficult to predict, and the scope of protection provided
by defense strategies is often limited. In such cases, global metrics fail to clearly reflect the
defensive performance. In other words, metrics can reflect the overall defensive performance
but cannot pinpoint the exact location of changes in defensive information. Therefore, it is
necessary to adopt a location-aware method.

The main contributions of our work are summarized as follows. Firstly, to capture
variations in attack-defense performance within specific local networks, we utilize a net-
work partitioning method (i.e., Louvain algorithm) to segment the extensive network into
smaller segments and perform correlation metrics on these segments to achieve a more
fine-grained assessment. Subsequently, we establish relevant security metrics within the
partitioned objective space for cyber mimic defense. These metrics encompass various
quantitative measures such as the common-mode index and failure risk, which are tailored
to accurately reflect the effectiveness of cyber mimic defense systems. This results in the
creation of an innovative approach for effectively assessing cyber mimic defense deployed
in complex networks. Finally, simulated attacks are carried out to verify the applicability
and effectiveness of the proposed metrics.

This paper is organized in the following way. In Section 2, we introduce the prelim-
inaries; in Section 3, we give the network partitioning method; in Section 4, we define
metrics in the constructed objective space; in Section 5, we perform simulation experiments
and give results; in Section 6, we list related work; and in Section 7, we make a conclusion
of our work and propose a vision for future development.
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2. Preliminaries

In this section, we provide a concise overview of the CMD framework, including its
key concepts, and illustrate the actual topology of modern networks.

2.1. CMD Framework

As depicted in Figure 1, the cyber mimic defense system [9] primarily comprises
six components: input agent, online set of executors, back-up executor pool, arbiter, sched-
uler, and output agent. During runtime, the input agent acquires input data and duplicates
them to distribute among the heterogeneous executors in the online executor set. Each
executor independently processes the data and produces an output. The arbiter then adju-
dicates the outputs of each executor based on a predefined algorithm to determine the final
output. Additionally, the arbiter provides feedback on the adjudication to the scheduler,
which uses this information to dynamically update the online executor set using specific
strategies. The functional details of each component are described as follows.

Figure 1. The Framework for Cyber Mimic Defense.

Input Agent: The input agent obtains the input, and copies and distributes it to each
online executor.

Online executor set: Each online executor possesses an equivalent function and oper-
ates independently to process input. It is crucial to ensure a high degree of heterogeneity
among the executors to mitigate common-mode vulnerabilities effectively. Once the calcu-
lations are completed, the results are transmitted to the arbiter for further processing.

Backup executor pool: The backup of online executors. The scheduler periodically or
selectively chooses an instance to replace the currently active online executor set.

Arbiter: The arbiter adjudicates the output results of each executor based on a prede-
fined algorithm and provides feedback regarding any suspicious executor to the scheduler.

Scheduler: The scheduler dynamically dispatches executors based on the operational
status of online executors, handling tasks such as offline cleaning of suspicious executors
and periodic replacement of executors.

Output Agent: The output agent obtains the voting results from the arbiter, formats it
if necessary, and then outputs the final result.

With its endogenous security mechanism rooted in dynamic, heterogeneous, and redun-
dancy strategies, cyber mimic defense establishes a spatiotemporal inconsistency scenario,
preventing attackers from replicating past successes. It enhances the concealability and
camouflage of the target defense scenario and behavior. Even in the event of an attack, the
attacker cannot simultaneously breach all the actuators (exponential difficulty) [9], ensuring
that the functions protected by the imitation system remain undisturbed and achievable. As
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a result, cyber mimic defense gains a more robust advantage when dealing with persistent,
stealthy, and high-intensity offensive and defensive scenarios, especially in the presence of
uncertain threats including unknown vulnerabilities, backdoors, and viruses.

2.2. Network Topology

Contrary to popular belief, most real-world networks do not exhibit random structures.
Instead, they often follow a scale-free network concept [14], where a small number of nodes
have a large number of connections, while the majority have only a few connections.
Scale-free networks are complex networks characterized by a degree distribution that
closely follows a power-law distribution. In such networks, the probability of a node having
k connections (i.e., degree k) follows a power-law distribution, denoted as P(k) ∼ k−γ.
The power exponent γ represents the structural properties of the network. The scale-free
network exhibits significant heterogeneity, and the distribution of connections among its
nodes is remarkably uneven, effectively simulating real-world network conditions.

In the era of the Internet of Everything, network-connected devices are diverse and
encompass not only computers but also switches, sensors, smart home devices, and more.
These devices can be regarded as nodes within the network. Let N represent the graph
that illustrates the physical topology of the network, and we use a binary group of nodes
and their connections to represent the network, denoted as N = 〈V, E〉. Here, V refers to
the devices in the network, collectively known as hosts, and E represents the undirected
edge connections between them. Subsequent studies are based on the proposed network
topology as described above.

3. Network Partitioning

In this section, we discuss the necessity of performing network partitioning on com-
plex networks for evaluating CMD and present how to utilize the Louvain algorithm for
network partitioning.

Due to the immense scale of modern networks, conducting an evaluation of CMD
technology from a global perspective in complex network environments is often imprecise
and challenging. The location of attacker intrusions is random and unpredictable, and
the effective coverage of CMD technology typically cannot encompass the entire large-
scale network. This means that attacks conducted outside the effective range of CMD
may remain largely unaffected. If an overall improvement in security is observed from
global evaluation metrics, it could lead to misjudgments about the effectiveness of CMD
technology. Therefore, it is necessary to adopt a divide-and-conquer approach, evaluating
the effectiveness of CMD technology within smaller regions to enhance the accuracy and
applicability of the metrics.

As mentioned in Section 2.2, there is significant heterogeneity in the connections between
nodes in real-world networks. This often leads to the aggregation of nodes, forming commu-
nities within the network. Community structure is one of the essential features of complex
networks [15]. Each module or community is composed of closely connected individuals
due to similar structural characteristics and positions. Community detection methods are
specifically designed to partition the internal structure of complex networks with the goal of
grouping network nodes into tightly connected communities. Compared to other traditional
methods, community detection methods pay more attention to the patterns of connections
between nodes, allowing for better capture of the local structural characteristics of the net-
work. We utilize a typical community detection algorithm, the Louvain algorithm, to partition
complex networks, which is described in detail below.

The Louvain algorithm [16] is grounded in multilevel optimization of modularity,
offering the advantage of speed and accuracy in obtaining a hierarchical community
structure with approximately linear time complexity. It takes a heuristic approach to
maximize the local modularity of smaller communities, joining only if such aggregation
leads to an increase in modularity. It is the preferred method for clustering (community
detection) of complex networks [17] and was rated as one of the best community detection
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algorithms by [18]. Two key concepts are integral to the algorithm: modularity Q and
modularity gain ∆Q [16], for which we provide the relevant formulas below.

• Modularity (Q)

Q = ∑
C
[
∑in
2m
− (

∑tot
2m

)2], (1)

where m denotes the total number of edges in the graph, ∑in denotes the sum of the
weights of the edges interconnected within community C, and ∑tot denotes the sum of
the weights of the edges connected to the nodes of community C, including the edges
inside the community as well as the edges outside the community.

• Modularity gain (∆Q)

∆Q(i→ C) = [
∑in +ki,in

2m
− (

∑tot +ki
2m

)2]−

[
∑in
2m
− (

∑tot
2m

)2 − (
ki

2m
)2]

=
1

2m
(ki,in −

∑tot ki
m

), (2)

where ki denotes the sum of the weights of the edges connected to node i and ki,in
denotes the sum of the weights of the edges of node i connected to the nodes in
community C.

The main flow of the Louvain algorithm is as follows:

1. Initially, each node is regarded as a separate community;
2. For each node i, try to assign it to a neighbor community in turn and calculate the

modularity gain ∆Q after assignment, find the assignment method with the maximum
modularity gain and assign it if its ∆Q > 0, otherwise leave it unchanged;

3. Repeat the steps in 2 until the communities in which all nodes are located no longer change;
4. Compress a community into a new node, convert the weights of edges interconnected

by nodes within the community to the weights of the ring of the new node, and convert
the weights of edges between communities to the weights of the edges between the
new nodes;

5. Repeat the above steps until the results converge.

Through the Louvain algorithm, we distinguish the network structure hierarchically
with a high degree of association between hosts within the community. Next, we use the
delineated communities as the objective space to develop the definition of metrics for cyber
mimic defense.

4. Metrics in the Objective Space

In this section, based on the objective space constructed by network partitioning, we
develop multidimensional evaluation metrics to measure the effectiveness of cyber mimic
defense technology.

4.1. Single Node

Definition 1 (Network topology). We represent the network community as a binary group
NCi = (N, E), where N is the set of all nodes (hosts) in the network, including switches, routers,
firewalls, etc., and E is the set of connection relationships between these nodes.

Definition 2 (Vulnerability set). A collection of all possible vulnerabilities, especially zero-day
vulnerabilities.

VUL = VUL1 ∪VUL2 ∪ · · · ∪VULn,

where VULi represents the set of all vulnerabilities on node Ni (suppose n nodes in the community)
and VULi = {vulj|vulj is a certain vulnerability on node Vi}.
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In CMD systems, the adjudication algorithm generally follows the “majority voting”
principle. Consequently, when more than half of the executors possess the same symbiotic
vulnerabilities and are successfully exploited by an attacker, they can potentially deceive
the arbiter and allow the attack to evade detection, similar to an environment where CMD
is not deployed. As a result, we propose the following hypothesis.

Assumption 1. For a CMD system with (2l + 1) online executors, when there exists an (l + 1)
order symbiotic vulnerability vult, it is considered that the node where the CMD system is deployed
has vulnerability vult.

Definition 3 (Vulnerability vector). Construct vulnerability vector Vi for each node.

Vi = (v1, v2, . . . , vm)
T , m = |VUL|,

vk =

{
1 vulk ∈ VULi

0 vulk /∈ VULi
, k = 1, 2, · · · , m.

Definition 4 (Node–vulnerability matrix). The indication of the corresponding relationship
between nodes and vulnerabilities.

NVn∗m = (V1, V2, . . . Vn)
T .

Definition 5 (CVSS vector). Construct vulnerability score vector CVSS for each vulnerability.

CVSS = (cvss1, cvss2, . . . , cvssm)
T ,

where cvssi(i = 1, 2, . . . , m) represents one-tenth (For normalization) of the Common Vulnerability
Scoring System (CVSS) score for the corresponding vulnerability.

Definition 6 (Importance vector). Construct importance vector IM for each node considering
the centrality (location of nodes in the community) and value (value of resources owned by nodes).

IM = (im1, im2, . . . , imn)
T ,

imk = w1 × centrality + w2 × value, k = 1, 2, . . . , n.

where wi(i = 1, 2) represents the weight of the corresponding factors, ∑ wi = 1. Here, the weights
and factors can be appropriately adjusted according to the actual situation.

In Definitions 2–5, the vulnerability set and CVSS score can be obtained from the
open CVE vulnerability database. In Definition 6, the value depends on the property and
resources owned by the nodes, and the centrality calculation method needs to be selected
according to the actual network situation from degree centrality, betweenness centrality,
closeness centrality, etc., and all of these concepts are defined.

Independent failure risk.

In CMD systems, the heterogeneity among different executors within the redundant
structure is crucial and directly impacts the overall performance of the model.
When multiple executors share the same vulnerability, it can lead to attacks escaping
detection, rendering the cyber mimic defense strategy ineffective. From the perspective of
individual nodes, we define the independent failure risk based on vulnerabilities, repre-
sented as an n-dimensional vector, where the i-th component represents the independent
failure risk of node Ni. In the formula, the importance vector IM represents the likelihood
of an attacker choosing to target a node, while NV × CVSS represents the likelihood of
successfully compromising a node if targeted in an attack.

RI = IMT ×NV× CVSS. (3)
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4.2. Relationship between Nodes

Definition 7 (Executor set). The set of executors in the CMD system, each capable of indepen-
dently implementing service functions, is denoted as A = {A1, A2, . . .}, where Ai represents
a specific executor.

Definition 8 (Higher-order symbiotic vulnerability). Exploitable vulnerabilities that can
achieve the same attack effect for m executors in executor set A (m > 3).

Definition 9 (Adjacency matrix). The adjacency matrix represents the adjacency between nodes
(We assume undirected edges in the community, so it is a symmetric matrix).

Adj = (aij)n×n,

aij =

{
1 edgeij ∈ E
0 edgeij /∈ E

.

Common-mode index.

When multiple nodes share similar vulnerabilities, attackers can rapidly exploit these
vulnerabilities on one node, potentially affecting multiple nodes in a similar or identi-
cal manner. This leads to the rapid horizontal spread of the attack’s impact, resulting
in irreversible consequences. Nodes within the same network community are closely
interconnected and often exhibit similar or identical component structures in the real en-
vironment, such as accessory modules purchased from the same batch of manufacturers.
Therefore, we introduce the concept of the common-mode index to measure the similarity
within a community, thereby revealing potential security risks.

We define the common-mode index between node Ns and node Nt (Ns, Nt ∈ N)
as follows.

I(Ns ,Nt) =
∑vulk∈(VULs∩VULt) CVSSvulk

∑vulk∈(VULs∪VULt) CVSSvulk
, (4)

where CVSSvulk indicates the CVSS score of the vulnerability vulk to characterize the
magnitude of the vulnerability’s harm.

Considering the particularity of the CMD system, we need to make another consid-
eration for the node where CMD is deployed. In CMD, multiple redundant executors
independently run the output results and obtain the final results through adjudication, and
the online executors are in a state of dynamic transformation. Due to these characteristics,
the cognition of the vulnerability set of the node where CMD is deployed needs to be
changed. After deploying CMD on the node, its vulnerability set is in a dynamic state.
Accordingly, we give the definition of the common-mode index between the node Ncmd
where CMD is deployed and the ordinary node Nx.

I(NCMD ,Nx) = ∑ I(NCMD ,Nx),ti
× ti

T
, (5)

where I(Ncmd ,Nx),ti
denotes the common-mode index in a period ti for a dynamically updated

CMD vulnerability set and T denotes a period as long as possible to show the possible
states of the executor set.

Based on the above definition, we integrate the common-mode index between nodes
into matrix form, as shown below.

CM = (cij)n×n,

cij = I(Ni ,Nj)
. (6)



Appl. Sci. 2023, 13, 9213 8 of 15

Transfer probability.

When an adversary breaks through a host, they often use this host as a base and then
launch attacks on other hosts to expand the control range and spread worms and viruses.
Typically, the attack spreads from the compromised host to neighboring hosts, gradually
infecting the entire network. Considering the attack transfer between neighboring nodes,
we propose the concept of transfer probability.

We construct the transfer matrix to represent the single-step transfer probability.

P =


p11 p12 · · · p1n
p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn

, (7)

where n represents the number of nodes in the community and pij denotes the probability
of an attacker moving from node i to node j in a single step, which is defined as follows.

pij =


0 aij = 0
p1
di

aij = 1 and tij = 0
p2
di

aij = 1 and tij = 1

, (8)

where p1, and p2, respectively, represent the success rate of transfer from node i to node
j with or without common-mode vulnerability (prior knowledge is needed for machine
learning in practical application), di denotes the degree of the i-th node, and aij is an element
in the adjacency matrix A. If aij = 1 then it means there is an edge between node i and
node j, aij = 0 means there is no edge between node i and node j, and tij is an element in
Tn∗n, which is defined as follows.

T = (tij)n∗n,

tij =

{
1 VULs ∩VULt 6= ∅
0 VULs ∩VULt = ∅

.

From the above definition, we can know:

1. 0 6 p1 6 p2 6 1
2. P = PT

Before starting the definition of transfer probability, a related lemma and a theorem
are given.

Lemma 1. ‖P‖1 < 1, where ‖·‖1 is the 1-norm of the matrix.
We know that ‖P‖1 = max

16i6n
∑n

j=1
∣∣pij
∣∣, so to prove ‖P‖1 < 1, we have to prove

max
16i6n

∑n
j=1
∣∣pij
∣∣ < 1, that is, to prove ∀i, ∑n

j=1
∣∣pij
∣∣ < 1.

∀i, we can prove that ∑n
j=1
∣∣pij
∣∣ = ∑n

j=1 pij = ∑n
j=1 aij pij 6 ∑n

j=1 aij
p2
di

= p2
di

∑n
j=1 aij =

p2
di

di = p2.
Therefore, ‖P‖1 6 p2 < 1. The lemma is proved.

Theorem 1. If ‖P‖ < 1, then I + P + P2 + · · · Pn + · · · converges, and I + P + P2 + · · · Pn +

· · · = (I − P)−1.
Since ‖P‖ < 1, then ‖I‖ + ‖P‖ + ‖P‖2 + · · · + ‖P‖n + · · · converges. And since the

completeness of (Pn∗n, ‖·‖), then I + P + P2 + · · · Pn + · · · converges.



Appl. Sci. 2023, 13, 9213 9 of 15

(I − P)
(

I + P + P2 + · · · Pn + · · ·
)

=
(

I + P + P2 + · · · Pn + · · ·
)

−
(

P + P2 + · · · Pn + · · ·
)

=I.

Therefore, I + P + P2 + · · · Pn + · · · = (I − P)−1. The theorem is proved.

Combining the basic transfer factor ε0 and the multi-step transfer case, we define the
transfer probability matrix as follows.

TP = ε0Adj + (P) + (P)2 + (P)3 + · · ·
= ε0Adj + (I− P)−1 − I. (9)

4.3. Entire Community

Comprehensive failure risk.

In the previous sections, we established quantitative evaluation metrics for individual
nodes and between nodes. By combining these metrics, we defined the comprehensive
community failure risk, which assesses the local effectiveness of deploying the cyber mimic
defense strategy. We formulated it as a quadratic expression as shown below, where RI
represents the individual node failure risk, and CM�TP represents the probability of
attack spread.

RC = RIT × (CM� TP)× RI, (10)

where � denotes the Hadamard product, i.e., the multiplication of corresponding elements.

5. Simulation

In this section, we conduct simulation experiments and comparative analysis to
validate the effectiveness and rationality of the above metrics.

Firstly, we use the NetworkX package in Python to generate a scale-free network
structure with a large number of nodes and apply the Louvain algorithm to partition the
network. After a limited number of iterations, the finite number of communities was
successfully divided. We color different communities separately for visualization, and the
example effect is shown in Figure 2.

(a) Before division (b) After division

Figure 2. The example effect of community division.

Secondly, we construct the vulnerability set by selecting n vulnerabilities from the open
CVE database and then generate each component of the vulnerability vector corresponding
to each node with probability p. For nodes with CMD deployed, we add up the vulnerability
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vectors of each executor in the online executor set (assuming a total of 2l + 1 online
executors), and consider a component in the resulting sum vector as indicating the presence
of a specific vulnerability if it is greater than l.

After completing the community partitioning and selecting the vulnerability set, we
utilize the network topology structure, vulnerability information, and pre-defined asset
values as inputs to calculate the metric values according to the formulas provided in
Section 4. To validate the reasonableness of the proposed metrics, we conduct simulated
attacks and compared the computed metric values with the results of the simulated attacks

Since the location of the attack initiation in the network is generally unknown, it
can be regarded as a random event [19]. We simulate the attacks from a probabilistic
perspective, where each simulation involves multiple attacks, and each attack is consid-
ered independent. A simulated attack can be divided into the following three phases:
initial attack, horizontal spread, and clearance. (1) Initial attack: The attacker randomly
selects a node and a vulnerability v from the vulnerability set to attack. If the chosen
node possesses vulnerability v, the attack is considered successful; otherwise, it fails.
(2) Horizontal spread: If the attacker successfully infiltrates the network in the initial attack,
at each time step, it can attempt to spread to neighboring nodes. If a neighbor node lacks
vulnerability v, the success rate of spreading to it is denoted by p1; otherwise, it is set to p2
(where p1 < p2). (3) Clearance: Considering that both regular nodes and CMD nodes have
their own checking and clearing mechanisms, we assume that at each time step, there is
a certain probability of the attacker being detected and cleared by the node’s protection
mechanism. For regular nodes, there is a probability of prec to find and clear exploitable
vulnerabilities at each time step (prec is set based on the actual probability). For CMD
nodes, if fewer than half of the executors have vulnerability v in the dynamic scheduling of
each time step, the attacker will not achieve their goal under the CMD’s ruling mechanism.
This scenario is equivalent to the vulnerability being cleared. The simulated attack contin-
ues until it no longer spreads, and then this round of simulated attack is concluded.

In the simulated attacks mentioned above, the number of simulated attacks on nodes
or communities can reflect their actual vulnerability to some extent. Combining the calcu-
lated failure risk of nodes and communities (i.e., independent and comprehensive failure
risk) with the number of attacks, we draw a scatter plot on the two-dimensional coordinate
system, as shown in Figure 3. After fitting the scatter points, it can be seen that the number
of attacks is roughly proportional to the calculated failure risk. We also performed a com-
parative analysis of the transfer probabilities between nodes, part of which is visualized in
Figure 4. The squares within the i-th row and j-th column of the figure represent the transfer
probability from node i to node j, with color intensity denoting the probability magnitude
Comparing the calculated and experimental results, we observe a close alignment. All of
these indicate that our proposed metrics have excellent practical application value.

(a) Risk for nodes (b) Risk for communities

Figure 3. The relationship between failure risk and number of attacks.
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(a) Calculated values (b) Experimental values

Figure 4. Transfer probability between nodes.

In addition, considering the scale of the network and the estimated deviation of p1
and p2, we calculated the coefficients of correlation between the theoretical vulnerability
and the actual vulnerability and summarized them in Tables 1–3. As shown in Table 1, we
tested the effectiveness of evaluation metrics for nodes and communities under different
network scales, and we can see that when the network scale gradually expands, our indica-
tors fit well with the actual situation, especially for our community-based research ideas.
In Tables 2 and 3, we consider the effect of the metrics when the estimated values p1 and
p2 in the transition probability mentioned above exhibit some deviation. The majority of
data in these tables exceed 0.7, signifying a robust correlation coefficient. This implies that
despite potential estimation deviation, our metrics retain substantial error tolerance.

Table 1. Average coefficient of correlation for nodes and communities under different variables.

Number of
Trials

Number of
Nodes

Number of
Simulated Attacks

Average Coefficient of
Correlation for Nodes

Average Coefficient of
Correlation for Communities

100 100 10,000 0.73 0.91

100 200 20,000 0.71 0.94

50 500 50,000 0.71 0.97

20 1000 100,000 0.70 0.97

20 2000 200,000 0.69 0.98

Finally, two comparative experiments are given, and the experimental data are shown
in Table 4. We compared with two related models [13,20] to further substantiate our
model’s performance. The outcomes demonstrate that our method yields favorable results
for calculating the correlation coefficients of nodes and communities within the intricate
network environment. Specifically, our approach outperforms other methods in terms of
nodes, and as the number of nodes progressively increases, the superiority of our model
becomes particularly pronounced within the community context.

Table 2. Coefficient of correlation for nodes considering the estimated deviation of p1 and p2.

Estimated
Deviation of p1

Coefficient
of Correlation

Estimated
Deviation

of p2 −5% −4% −3% −2% −1% 0% 1% 2% 3% 4% 5%

−5% 0.92 0.98 0.56 0.99 0.95 0.99 0.83 0.94 0.99 0.91 0.86

−4% 0.95 0.96 0.97 0.96 0.96 0.97 0.98 0.96 0.67 0.96 0.99

−3% 0.92 0.95 0.95 0.97 0.74 0.99 0.96 0.98 0.97 0.74 0.96

−2% 0.98 0.89 0.99 0.83 0.92 0.96 0.93 0.85 0.92 0.96 0.94

−1% 0.78 0.95 0.88 0.95 0.71 0.99 0.94 0.92 0.98 0.93 0.78

0% 0.96 0.95 0.87 0.98 0.88 0.99 0.84 0.90 0.97 0.91 0.97
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Table 2. Cont.

Estimated
Deviation of p1

Coefficient
of Correlation

Estimated
Deviation

of p2 −5% −4% −3% −2% −1% 0% 1% 2% 3% 4% 5%

1% 0.95 0.91 0.93 0.93 0.93 0.95 0.99 0.92 0.91 0.96 0.91

2% 0.96 0.90 0.88 0.93 0.95 0.96 0.92 0.90 0.94 0.98 0.98

3% 0.92 0.98 0.97 0.83 0.97 0.96 0.89 0.96 0.87 0.95 0.98

4% 0.92 0.90 0.98 0.94 0.93 0.82 0.54 0.90 0.84 0.96 0.86

5% 0.94 0.93 0.94 0.92 0.82 0.95 0.97 0.96 0.97 0.95 0.96

Table 3. Coefficient of correlation for communities considering the estimated deviation of p1 and p2.

Estimated
Deviation of p1

Coefficient
of Correlation

Estimated
Deviation

of p2 −5% −4% −3% −2% −1% 0% 1% 2% 3% 4% 5%

−5% 0.66 0.78 0.57 0.77 0.74 0.82 0.72 0.75 0.77 0.73 0.82

−4% 0.72 0.72 0.80 0.77 0.76 0.78 0.81 0.72 0.73 0.80 0.77

−3% 0.79 0.84 0.76 0.76 0.80 0.79 0.69 0.65 0.74 0.74 0.75

−2% 0.77 0.61 0.79 0.78 0.70 0.73 0.68 0.71 0.69 0.70 0.75

−1% 0.71 0.74 0.62 0.73 0.64 0.80 0.72 0.78 0.72 0.74 0.66

0% 0.78 0.76 0.74 0.74 0.75 0.85 0.74 0.63 0.74 0.79 0.76

1% 0.74 0.73 0.77 0.74 0.71 0.70 0.78 0.74 0.78 0.76 0.76

2% 0.70 0.69 0.74 0.74 0.74 0.67 0.72 0.63 0.72 0.74 0.80

3% 0.83 0.67 0.77 0.73 0.79 0.70 0.77 0.76 0.76 0.76 0.84

4% 0.80 0.76 0.74 0.78 0.81 0.77 0.70 0.79 0.68 0.74 0.64

5% 0.78 0.77 0.72 0.49 0.65 0.81 0.79 0.80 0.63 0.72 0.78

Table 4. Average coefficient of correlation for nodes and communities for different models.

Number of
Trials

Number of
Nodes

Number of
Simulated Attacks

Models Average Coefficient of
Correlation for Nodes

Average Coefficient of
Correlation for Communities

100 100 10,000

Our model 0.73 0.91

Model 1 0.35 0.66

Model 2 0.65 0.98

100 200 20,000

Our model 0.71 0.94

Model 1 0.39 0.72

Model 2 0.60 0.98

50 500 50,000

Our model 0.71 0.97

Model 1 0.48 0.82

Model 2 0.52 0.97

20 1000 100,000

Our model 0.70 0.97

Model 1 0.56 0.88

Model 2 0.58 0.95

20 2000 200,000

Our model 0.69 0.98

Model 1 0.55 0.92

Model 2 0.52 0.96

6. Related Works

Security Strategy Measurement. The importance of evaluation metrics in evaluat-
ing the effectiveness of new security strategies that are constantly emerging cannot be
overstated. Lingyu Wang et al. proposed a theoretical model based on zero-day security,
combining the value of target assets and the shortest attack sequence to obtain k-zero-day
security metrics [21]. Jin B. Hong et al. classified and proposed a series of performance
metric definitions based on different characteristics of attack and defense behaviors, includ-
ing attack cost, attack path exposure time, defense deployment cost, and downtime [22].
Jin B. Hong et al. also used the hierarchical attack representation model and the importance
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measure to evaluate the effectiveness and scalability of MTD technology [23]. Hai Jin et al.
proposed a security framework that automatically senses and updates in container-based
cloud environments and builds a multidimensional attack graph model to analyze attack
behavior [11]. Warren Connell et al. proposed a maximizing utility function approach
to capture the trade off between security and performance [24]. Luis Muñoz-González
et al. modeled attack graphs and used Bayesian inference to perform static and dynamic
analysis [25]. Luis Muñoz-González et al. also proposed a Bayesian-based probabilistic
graphical model to estimate the vulnerability and interconnection of system components
and calculate the attack probability of target nodes to determine security [26]. Mengyuan
Zhang et al. evaluated the network diversity based on the effective quantity of different
resources, and the minimum and average attack effort, respectively [27]. These studies
typically conduct evaluations from a global perspective. However, due to the significant
asymmetry in network attacks and defenses, especially in complex networks, they are
unable to identify specific regions where security benefits can be obtained.

Cyber Mimic Defense Measurement. As research on cyber mimic defense unfolds,
how to evaluate the effectiveness of CMD deployment becomes a key issue. Fei Yu et al.
conducted a series of experiments on basic, common-mode, and differential-mode attacks
to obtain the defense success rate and analyzed the delay and throughput to reflect their
performance loss [28]. Congqi Shen et al. proposed a decentralized multi-adjudicator
arbiter approach to determine the defense effectiveness using the consistent convergence
of subarbiters after data injection attacks [29]. Quan Ren et al. analyzed the applicability of
cyber mimic defense in a software-defined network from the aspects of availability, response
time, compromise tolerance, and performance [30]. Haiyang Yu et al. studied the effect
of cyber mimic defense in a distributed system from the aspects of data reliability, fault
repair, and security [31]. Chen Yu et al. analyzed the security and effectiveness of mimic
DAA scheme [32]. Wei Liu et al. evaluated the mimic defense strategy in terms of storage
limitation, throughput, and algorithm speed [33]. Yufeng Zhao et al. constructed a security
quantification model from multiple angles, analyzed the different characteristics of cyber
mimic defense architecture, and achieved a relatively complete security quantification
method [34]. These studies primarily focus on measuring the security of cyber mimic
defense system itself, and there is currently a lack of research on evaluating the effectiveness
of deploying cyber mimic defense in large-scale networks.

7. Conclusions

In this paper, we propose a series of cyber mimic defense evaluation metrics by
partitioning the complex network with the idea of the Louvain algorithm and mapping
it to the objective space for finer-grained evaluation, incorporating common-mode index,
transfer probability, and failure risk. Numerous simulation results demonstrate that our
proposed metrics are highly reliable and can accurately reflect the effectiveness of cyber
mimic defense technology deployed in complex networks. In future research, we will
further refine the metrics for cyber mimic defense and integrate them with real-world
scenarios. We believe that this work will inspire researchers in related fields and contribute
to the improvement of the cyber mimic defense measurement.
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